Sulindac Compounds Facilitate the Cytotoxicity of β-Lapachone by Up-Regulation of NAD(P)H Quinone Oxidoreductase in Human Lung Cancer Cells
نویسندگان
چکیده
β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.
منابع مشابه
Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India
NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...
متن کاملArylamino-nor-β-lapachone derivative-induced apoptosis in human prostate cancer cells: involvement of NAD(P)H:quinone oxidoreductase (NQO1)
Background b-lapachone, a DNA repair inhibitor, has been recognized as important prototype with activity against cancer cells devoided of cytotoxicity in non-tumor cells. NQO1 is a reductive enzyme that is important for the activation of many bioreductive quinones. Thus, differential levels of NQO1 in tissues, including tumors, can provide a target for an enzyme-directed approach to cancer ther...
متن کاملEsterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy.
UNLABELLED Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered ...
متن کاملDetection of NAD(P)H: Quinone Oxidoreductase 609C T Polymorphism in Blood and Archival Human Tissues Using a Simple PCR Method
متن کامل
UDP-Glucuronosyltransferase 1A Determinates Intracellular Accumulation and Anti-Cancer Effect of β-Lapachone in Human Colon Cancer Cells
UNLABELLED β-lapachone (β-lap), an NAD(P)H quinone oxidoreductase 1 (NQO1) targeting antitumor drug candidate in phase II clinical trials, is metabolically eliminated via NQO1 mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation. This study intends to explore the inner link between the cellular glucuronidation and pharmacokinetics of β-lap an...
متن کامل